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We have performed direct numerical simulations for a microbubble-laden spatially
developing turbulent boundary layer (SDTBL) and compared the amount of skin
friction reduction due to the presence of the bubbles for two Reynolds numbers:
Reθ = 1430 and Reθ = 2900. The results show that increasing the Reynolds number
decreases the percentage of drag reduction. Increasing Reθ ‘squeezes’ the quasi-
streamwise vortical structures toward the wall, whereas the microbubbles ‘push them
away’ from the wall. The net result of these two opposing effects determines the
amount of skin friction reduction by the microbubbles. The displacement of the
vortical structures by the microbubbles is a result of the local positive velocity
divergence, ∇ · U , created by the bubble concentration gradients. Thus, the volume
fraction of bubbles that is responsible for the reduction of skin friction in a SDTBL
at a given Reynolds number is not sufficient to produce the same amount of reduction
in skin friction at higher Reynolds number.

1. Introduction
In a recent paper (Ferrante & Elghobashi 2004b, hereinafter referred to as FE),

we reported the results of a direct numerical simulation (DNS) study to explain the
physical mechanisms responsible for the reduction of skin friction in a microbubble-
laden, spatially developing turbulent boundary layer (SDTBL) of a liquid flow over
a flat plate at Reθ = 1430 (or Rex ≈ 8 × 105). The objective of the present paper
is to examine the effect of increasing Reθ on the reduction of skin friction in the
microbubble-laden SDTBL. We increase Reθ to more than double its value in FE, i.e.
to Reθ =2900 (or Rex ≈ 2 × 106).

The motivation for the present study is to answer the following questions:
(i) If both the bubble diameter and bubbles volume fraction are kept constant,

would the reduction in skin friction decrease or increase on increasing the Reynolds
number of a SDTBL over a flat plate?

(ii) What are the physical mechanisms causing the increase or decrease?
At present there are no published experimental, numerical or analytical studies that
can answer these questions.

The experimental study of Madavan, Deutsch & Merkle (1985) (the only published
detailed results on the subject) shows that, for a given volume fraction of injected air,
increasing the liquid free-stream velocity, U∞, from 10.8 to 16.7 m s−1 decreases the
amount of skin friction reduction (see their Figures 8 and 9, p. 245). However, these
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Figure 1. Schematic of bubble-laden turbulent boundary layer flow over a flat wall.

results could not answer the above questions since the diameter of a bubble created
by injecting air into an orifice or a porous plate, as was the case in the experiment,
decreases as the shear stress at the plate increases due to the higher U∞ (Hinze
1955; Silberman 1957; Pal, Merkle & Deutsch 1988; Martinez-Bazan, Montanes &
Lasheras 1999). In other words, the experimental results of Madavan et al. (1985)
do not distinguish between the simultaneous and most probably opposing effects of
increasing the Reynolds number of the SDTBL and decreasing the bubble diameter
on the reduction of the skin friction at the plate. It should be noted that our earlier
DNS study (Ferrante & Elghobashi 2004a) of the effects of bubble diameter on
the reduction of skin friction in the SDTBL indicates that the smaller the bubble
diameter, the larger the reduction in skin friction.

Our new DNS results, to be presented in the following sections, show that increasing
the Reynolds number from Reθ =1430 (or Rex ≈ 8 × 105) to Reθ = 2900 (or Rex ≈ 2×
106), while fixing the bubbles diameter and volume fraction, decreases the amount of
drag reduction in the microbubble-laden SDTBL over a flat plate. We explain in § 3
the physical mechanisms responsible for this Reynolds number effect.

2. Mathematical description
Figure 1 shows a schematic of the SDTBL flow where the gravitational acceleration

vector is perpendicular to the wall, and pointing downwards.
We employ the Eulerian–Lagrangian approach in which we solve the fluid continuity

and momentum equations, (2.1) and (2.2), in an Eulerian framework, whereas the
bubble acceleration equation, (2.3), is solved for each bubble to track its trajectory
in time. The equations governing the motion of a spatially developing bubble-laden
turbulent boundary layer can be written in non-dimensional form as (Ferrante 2004):

carrier fluid continuity,

∂t (1 − C) + ∂j [(1 − C) Uj ] = 0, (2.1)

carrier fluid momentum,

∂t [(1 − C)Ui] + ∂j [(1 − C)UiUj ] = −(1 − C) ∂iP + ν ∂j [(1 − C)(∂jUi + ∂iUj )]

−fi + (1 − C)gi, (2.2)

bubble acceleration,

dVi

dt
= 3

DUs,i

Dt
+

1

τb

(Us,i − Vi + Vt ) + [(Us − V ) × Ωs]i . (2.3)

In the above equations, Ui are the components of instantaneous fluid (liquid)
velocity and P is the pressure. C(x, y, z, t) is the instantaneous local bubble-phase
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Reδ ν = 1/Reδ uτ0 δ̌0(mm) Ǔ∞(m s−1) ďb(µm) d+
b τ+

b

8 × 103 1.25 × 10−4 0.0464 9.7 0.83 40 1.54 0.065
19 × 103 5.26 × 10−5 0.0425 9.7 1.97 40 3.34 0.307

Table 1. Fluid and bubble properties.

Reδ Lx Ly Lz Nx Ny Nz �x+ �y+ z+
min

8 × 103 20 δ0 5 δ0 7 δ0 1024 512 128 7.25 3.6 0.58
19 × 103 20 δ0 5 δ0 7 δ0 1024 512 128 15.8 7.9 1.26

Table 2. Computational mesh details.

concentration (or volume fraction) computed from the local number of bubbles Nb

in a given computational cell of volume Vc as C(x, t) =Nb(x, t) [πd3
b /6] / Vc(x),

where db is the bubble diameter. The dimensionless kinematic viscosity is ν =1/Reδ

where Reδ = Ǔ∞δ̌0/ν̌ is the Reynolds number based on the dimensional free-stream
velocity Ǔ∞, boundary layer thickness (based on the location of 99% of the free-
stream velocity) δ̌0 at the inlet plane (x = 0) of the computational domain, and
kinematic viscosity ν̌ ( = 10−6 m2 s−1). All variables in (2.1)–(2.3) and throughout
the paper are non-dimensionalized by Ǔ∞ and δ̌0 (table 1). The force fi in (2.2) is
imparted by the bubbles to the surrounding fluid, and is calculated according to
Druzhinin & Elghobashi (1998) as −fi =C(DUs,i/Dt −gi), where gi is the component
of the gravitational acceleration in the i-direction, gi = −gδiz (figure 1), where g is
the dimensionless gravitational acceleration. In (2.3) Us and Ωs are respectively the
instantaneous fluid velocity and fluid vorticity at the bubble location, xb(t), and V
is the bubble instantaneous velocity. Also, d/dt ≡ ∂t + Vj ∂j is the time derivative in
a frame moving with the bubble, D/Dt ≡ ∂t + Uj ∂j is the time derivative following
a fluid element. The bubble response time τb is defined according to Stokes drag
law as τb = d2

b / (36 ν) (table 1). The terminal velocity Vt = −2τb gi . Throughout the
paper, dimensionless quantities in wall units carry the superscript +, i.e. U+

1 =U1/uτ ,
z+ = zuτ/ν and t+ = tu2

τ /ν, where uτ is the wall friction velocity.
The computational domain is a parallelepiped whose dimensions Lx , Ly and Lz, and

the corresponding numbers of grid points, Nx , Ny and Nz in the streamwise, spanwise
and wall-normal directions respectively are listed in table 2. The computational mesh
is equispaced in the streamwise and spanwise directions, with grid spacings �x+ and
�y+ (table 2), whereas in the vertical direction, the mesh is stretched gradually via
mapping a uniform computational grid ζ onto its non-uniform counterpart z with a
combination of hyperbolic tangent functions (Ferrante & Elghobashi 2004c) up to
z = 3.6 δ0 using 96 mesh points, above which a quadratic grid function is applied.

The initial (t = 0) velocity field of the fluid throughout the domain was identical
to the instantaneous velocity field (t =160) computed by DNS of the single-phase
SDTBL (φv = 0) at the same Reδ on the same mesh (table 2). The boundary conditions
and the generation of the turbulent flow conditions at the inlet plane (x = 0) are
described in detail by Ferrante & Elghobashi (2004c).

At time t = 0 the bubbles were released randomly in the computational domain
inside the boundary layer zone (z < δ0 = 1), with each bubble velocity component set
equal to that of the fluid at the bubble location. In order to keep the average volume
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Case Reδ Reθ (x = 0) φv NB (Cf,SPF − Cf )/Cf,SPF

A 8 × 103 1020 0 0 0
B 8 × 103 1020 0.01 29 × 106 22%
C 19 × 103 2340 0 0 0
D 19 × 103 2340 0.01 29 × 106 19%

Table 3. Physical parameters for the four cases (A–D) studied and reductions of skin friction.
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Figure 2. (a) Mean streamwise velocity profile at Reθ = 2900; (b) Reynolds stresses profiles
at Reθ = 2900. Present DNS, case C (lines); experimental data of DeGraaff & Eaton (2000)
(symbols).

fraction of bubbles in the computational domain, φv , constant in time, when a bubble
exits one of the domain boundaries it is reinjected at a random location inside the
boundary layer according to a semi-Gaussian distribution for the streamwise location,
except for the spanwise boundaries (y = 0 and y = Ly) where periodicity was applied.
The details of our numerical method are provided in the Appendix.

3. Results
The parameters (Reδ , φv , NB), Reθ at the inflow plane x = 0, and the percentage

reduction of skin friction in the four test cases studied are listed in table 3. NB is the
total number of bubbles in the computational domain. table 1 shows the properties
of the bubbles used in the present study. In tables 1 and 2 the variables written in
wall units were non-dimensionalized using the dimensionless friction velocity at the
inflow plane, uτ0

, and ν (table 1).

3.1. Single-phase SDTBL: comparison with experiments

We first validate our DNS results for the single-phase SDTBL before presenting
the results for the bubble-laden flow. We compare our DNS results for the single-
phase SDTBL (case C) with the experimental data of DeGraaff & Eaton (2000)
for Reθ = 2900. For this case C we used Nz = 192 and Lz = 3.6 (z+

min =0.6). We
write the fluid velocity component, Ui , as the sum of its mean and fluctuation,
Ui(x, y, z, t) = 〈Ui〉(x, z) + ui(x, y, z, t), where 〈. . .〉 represents, throughout the paper,
spatial averaging in the spanwise (y) direction in addition to time averaging of the
enclosed quantity, and ui is the local instantaneous deviation from 〈Ui〉. Figure 2
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Figure 3. Temporal distribution of skin friction, Cf t , for single-phase and bubble-laden
SDTBL, for Reθ = 1430 and Reθ = 2900.

displays the comparison in wall units for the mean streamwise velocity, 〈U1〉+, and
three Reynolds stresses at x = 14, where Reθ =2900. The mean velocity profile is in
excellent agreement with the experimental profile. The agreement for the Reynolds
stresses 〈u2

1〉+, 〈u2
3〉+ and 〈u1u3〉+ is very good especially for the locations of the peaks

of the three profiles. Our computed skin friction coefficient (Cf x = 2 τw/(ρ U 2
∞) = 3.41×

10−3, where τw =µ[∂z〈U1〉(x, z)]z =0) at Reθ= 2900 is in excellent agreement with that
measured (Cf x = 3.36 × 10−3) by DeGraaff & Eaton (2000). It should be mentioned
that our present DNS results are the first to be reported for such relatively high
Reθ = 2900 (or Rex ≈ 2 × 106).

3.2. Microbubble-laden SDTBL

The temporal development of the skin friction coefficient, Cf t , defined as

Cf t =
2

(ρ U 2
∞)

1

LxLy

∫ Lx

0

∫ Ly

0

τw(x, y, t) dy dx, (3.1)

where τw(x, y, t) =µ[∂zU1(x, y, t)]z = 0, is shown in figure 3 for both Reθ =1430 and
Reθ = 2900. The figure shows that doubling Reθ reduces the percentage of skin friction
reduction, e.g. from 27 % to 23 % at t =30. Defining

Cf =
1

T

∫ T

0

Cf t dt

as a time-average of Cf t we find that doubling Reθ reduces the percentage of skin
friction reduction from 22 % to 19 % (table 3). Since the DNS of both flows used
the same bubble volume fraction and the same bubble diameter then the above result
is due only to increasing Reθ . Our objective now is to explain how the increase of
Reθ decreases the amount of skin-friction reduction. It should be noted that the
percentage reduction in skin friction for Reθ = 1430 here (case B) is larger than that
(12%) for case C in our earlier study (FE). The reason is that the bubble diameter
used here equals nearly two thirds of its value in FE (Ferrante & Elghobashi 2004a).
Our earlier DNS results (FE) for the microbubble-laden SDTBL for Reθ = 1430 with
volume fraction ranging from φv=0.001 to 0.02 show that the presence of bubbles
results in a local positive divergence of the fluid velocity, ∇ · U > 0, creating a positive
mean velocity, 〈U3〉, normal to (and away from) the wall which, in turn, reduces
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Figure 4. Profiles of λ′
2(z) and ω′

1(z) at x = 18.9 for Reθ = 1430 and Reθ = 2900.

the mean streamwise velocity and displaces the quasi-streamwise longitudinal vortical
structures away from the wall. We identified the quasi-streamwise vortical structures
using the method of Jeong & Hussain (1995), who defined λ2 as the second largest
eigenvalue of the tensor (SikSkj +ΩikΩkj ), where Sij ≡ (∂jUi +∂iUj )/2 is the strain rate
tensor, and Ωij ≡ (∂jUi − ∂iUj )/2 is the rotation rate tensor. Jeong & Hussain (1995)
showed that connected flow regions of negative values of λ2 identify the cores of the
vortical structures. We applied this method to our SDTBL flow, and observed that
the vortical structures populating the buffer layer in the bubble-laden SDTBL remain
almost aligned with the streamwise direction (quasi-streamwise vortical structures)
as in the single-phase SDTBL. This was indicated by the profiles of the correlation
coefficients, Ri (Jeong, Hussain & Kim 1997), between −λ2 and the absolute values
of the vorticity components, ωi , as they remain nearly identical for the single-phase
and bubble-laden SDTBLs.

The displacement of the quasi-streamwise vortical structures away from the wall
has the following two main effects:

(i) it increases the spanwise gaps between the wall streaks associated with the sweep
events and reduces the streamwise velocity in these streaks, thus reducing the skin
friction by up to 12 % for φv =0.01 and about 20 % for φv = 0.02;

(ii) it moves the location of the peak Reynolds stress production rate away from the
wall to a zone of a smaller transverse gradient of the mean streamwise velocity (i.e.
smaller mean shear), thus reducing the production rate of turbulence kinetic energy
and enstrophy.

Now since the displacement of vortical structures away from the wall is the key
mechanism for drag reduction we need to examine the effect of increasing Reθ on the
eigenvalue λ2. Figure 4(a) shows the profiles of λ′

2(z), the root mean square of λ2, for
both the single-phase and bubble-laden SDTBLs for the two cases of Reθ = 1430 and
Reθ = 2900. We see that doubling Reθ in the single-phase SDTBL nearly triples the
maximum value of λ′

2(z) and displaces the profile peak toward the wall from z = 0.06
to z = 0.025. Both the magnitude and location of the λ′

2(z) peak are dictated by the
magnitudes and locations of the maximum values of ω′

1 (figure 4b) and (∂U1/∂z)
(figure 5b) according to the above definition of λ′

2(z). Note that all the profiles of
ω′

1(z) (figure 4b) display two peaks: one, in the buffer layer, aligned with the peak
of λ′

2(z), created by the quasi-streamwise vortical structures, and another at the wall,



Reynolds number effect on drag reduction in a microbubble-laden flow 99

3.0

2.5

A
B 
C 
D

A
B 
C 
D

2.0 (a)

(b)

1.5Z

1.0

0.5

0

0 0.2 0.4
�U� z

0.6 0.8 1.0

40

30

20

10

0

10–3 10–2 10–1 100 101

�
ω

2�
 =

 �
∂ z

U
1�
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for Reθ = 1430 and Reθ = 2900.
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energy at x = 18.9 for Reθ = 1430 and Reθ = 2900.

with larger magnitude resulting from the opposite-signed ω′
1 generated by the no-

slip condition. The displacement of the λ′
2(z) profile peak toward the wall with the

increase of Reθ in the single-phase SDTBL is due to the fact that the zone containing
the steepest gradient (∂U1/∂z) moves closer to the wall (figure 5b) (see the above
definition of λ2) as the Reynolds number increases since the enhanced turbulent
mixing brings higher velocity fluid closer to the wall (figure 5a). This displacement
is clearly manifested in the similar displacements of the profiles of the Reynolds
stresses 〈u2

1〉(z) (figure 6a) and production rate, P (z), of turbulence kinetic energy
(figure 6b). It should be noted that if the profiles in Figures 4 and 6 were plotted vs.
z+ instead of z these displacements would have been masked since the viscous length
scale (�= ν/uτ ) decreases with increasing Reθ , and z+ = z/�.

It is now clear that in the single-phase SDTBL, the higher the Reynolds number,
the closer to the wall the quasi-streamwise longitudinal vortical structures are. This
finding is confirmed by plotting the contours (not shown here) of the instantaneous
vorticity ω1 in a vertical, (y, z), plane for both Reθ = 1430 and 2900.
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and Reθ = 2900.

In the bubble-laden SDTBL, as mentioned above and discussed in FE, microbubbles
reduce the skin friction by displacing the vortical structures away from the wall. Again,
this is confirmed by plotting the contours (not shown) of the instantaneous vorticity
ω1 in a vertical, (y, z), plane for both Reθ = 1430 and 2900. The contours indicate that
most of the structures with the largest ω1 magnitude in the high-Reynolds-number,
Reθ = 2900, flow remain closer to the wall than their counterparts in the Reθ = 1430
flow. This is in agreement with the profiles of λ′

2(z) and ω′
1(z) shown in figure 4. Thus,

increasing Reθ ‘squeezes’ the vortical structures toward the wall whereas microbubbles
‘push them away’ from the wall. The net result of these two opposing effects determines
the amount of skin friction reduction by the microbubbles. The displacement action
by the microbubbles is a result of the local positive velocity divergence, ∇ · U , created
by their concentration gradients as was discussed by FE. The instantaneous local ∂iUi

was computed at the pressure grid points using the staggered velocity components Ui

via a second-order central finite-difference scheme. Spatial averaging in the spanwise
(y) direction and time averaging of ∂iUi were performed to produce the profile of
〈∂iUi〉(z) at x = 18.9 shown in figure 7(a). Figure 7 shows that:

(a) the microbubbles create a larger ∇ · U in the lower-Reynolds-number
(Reθ = 1430) SDTBL than that for Reθ = 2900, and the peak of ∇ · U for the former
is shifted slightly away from the wall relative to that of the latter;

(b) ∇ · U is positive for both flows because 〈∂zU3〉 > 0 and 〈∂xU1〉 < 0 and the
magnitude of the former is larger than that of the latter.

Figure 8(a) shows the profiles of bubble mean concentration 〈C〉 at three different
streamwise stations x = 5, 14 and 18.9. Note that the profile at x = 5 is from case C
of FE since for cases B and D of the current manuscript we had only stored mean
profiles at x = 14 and 18.9. The profiles of 〈C〉 at x = 14 and 18.9 show a peak at about
z = 1, which corresponds to z+ = 356 for Reθ =1430, and z+ = 785 for Reθ = 2900.
This means that, in both cases C and D, the peak of 〈C〉 occurs outside the near-
wall region (0 < z+ < 100). The position of this peak is a result of the reinjection of
bubbles inside the computational domain. Bubbles exiting the computational domain
are reinjected according to a semi-Gaussian law in the streamwise direction, which
is nearly zero for x > 10, and uniformly distributed in the spanwise y-direction
and in the wall-normal z-direction for 0<z <δ0 = 1. The volume fraction of bubbles
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exiting the computational domain per time step is only 0.009 % of the average void
fraction, φv . The bubbles disperse in the z-direction as they move downstream, as
shown in Figures 8(a) and 8(b), depicting the profiles of 〈C〉 and the bubble flux in
the wall-normal direction 〈CV3〉.

In order to explain how the gradients of bubble concentration, created by the
bubbles’ interactions with the vortical structures, generate positive ∇ · U we examine
the continuity equation (2.1) by rewriting it as

∂Ui

∂xi

=
[DC/Dt]

(1 − C)
=

1

(1 − C)
[∂C/∂t + U∂C/∂x + V ∂C/∂y + W∂C/∂z] . (3.2)

We now examine the instantaneous behaviour of the four terms in the square brackets
on the right-hand side of (3.2). Figure 9(a) shows the instantaneous z profiles of
W∂C/∂z and ∇ · U locally averaged in the y-direction, at x = 18.9 and t = 40 for
Reθ = 1430. This region is within the sweep zone depicted in figure 10 and will be
discussed below. Figures 9(b) and 9(c) show the corresponding profiles of U∂C/∂x

and V ∂C/∂y. It is seen that the amplitudes of the fluctuations of W∂C/∂z and ∇ · U
are of the same order of magnitude whereas those of U∂C/∂x and V ∂C/∂y are
an order of magnitude smaller. The fluctuations of ∂C/∂t (not shown) display as
many positive as negative peaks, as expected, with amplitudes of the same order of
magnitude as those of W∂C/∂z. It should be also noted that in the region close to the
wall (z � 0.2 or z+ � 71) the positive peaks of W∂C/∂z occur at the same z locations
of most (75 %) of the large (> 0.05) peaks of ∇ · U .

In order to explain the mechanisms responsible for these characteristics of W∂C/∂z,
we show in figure 10(a) the instantaneous (at t =40) contours of the streamwise
vorticity, ω1, together with the bubble locations and velocity vectors, for Reθ = 1430,
in a vertical (y, z)-plane at x =18.9, in a small zone (0.45 � z � 0 and 4.6 � y � 4.1)
close to the wall. Figure 10(b) shows the instantaneous contours of the fluid U3 or
W velocity together with the bubble locations and velocity vectors at the same time
and zone of figure 10(a). We selected this zone because it contains a typical near-wall
quasi-streamwise vortical structure. Focusing in figure 10(a) on the counter-clockwise
vortex centred at y =4.28 and z = 0.15 we see that bubbles are being advected in the
down-draught (or sweep) side toward the wall, and carried away from the wall in
the up-draught (or ejection) side of the vortex. The contours of the fluid W velocity
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in figure 10(b) clearly display the sweep and ejection regions straddling the vortex
and how the sweep (W< 0) increases the bubble concentration closer to the wall
(∂C/∂z < 0), and the ejection (W> 0) increases the bubble concentration away from
the wall (∂C/∂z > 0). The schematic in figure 10(c) depicts this physical mechanism
which is responsible for the above described behaviour of W∂C/∂z (figure 9(a)), and
thus resulting in a positive 〈∂W/∂z〉 as shown in figure 7. We have also plotted (not
shown here) the contours of the vorticity, ω1, and W velocity as in figure 10(a) but for
Reθ = 2900. We find that the sizes of the vortical structures are reduced, as expected,
with the increase of Reθ and the corresponding increase of the strain rate ∂U1/∂z.
The structures are also squeezed toward the wall in the zone z < 0.1 as discussed
earlier. The magnitudes of the bubble velocity vectors in the selected vertical plane
are considerably reduced relative to those in figure 10 due to the increased bubble
velocity in the streamwise direction owing to the advection by the carrier fluid. The
result is the increase of the magnitude of the negative ∂U1/∂x for Reθ = 2900 in
figure 7.

In summary, our DNS results show that increasing the Reynolds number decreases
the percentage of drag reduction. Increasing Reθ ‘squeezes’ the quasi-streamwise
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Figure 10. (a) Instantaneous contours at t = 40 of streamwise vorticity, ω1, and vectors of
bubble velocity for Reθ =1430 near a quasi-streamwise vortex at x = 18.9. (b) Instantaneous
contours of wall-normal fluid velocity, W , and vectors of bubble velocity in the same zone as
in (a). (c) Schematic of bubble accumulation near a vortex.

vortical structures toward the wall whereas the microbubbles ‘push them away’ from
the wall. The net result of these two opposing effects determines the amount of skin
friction reduction by the microbubbles. The displacement action by the microbubbles
is a result of the local positive velocity divergence, ∇ · U , created by their concentration
gradients. Thus, the volume fraction of bubbles that is responsible for the reduction
of skin friction in a SDTBL at a given Reynolds number is not sufficient to produce
the same amount of reduction in skin friction at higher Reynolds number.

This work was supported by ONR Grant No. N00014-05-1-0059, and the computa-
tions were performed on IBM-Power4+ located at the Naval Oceanographic Office at
NASA’s John C. Stennis Space Center (NAVO-MSRC, Mississippi), and on CRAY-
T3E located at U.S. Army High Performing Computing Research Center (AHPCRC,
Minnesota).

Appendix. Numerical method for the coupled bubble–fluid phases
In order to write the Poisson equation for pressure in terms of pressure fluctuations,

p, it is necessary to remove the hydrostatic pressure from the total pressure P in the
momentum equation of the carrier fluid (2.2) as follows (Druzhinin & Elghobashi
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1998):

p = P + g

∫ x3

0

(1 − C) dx3 (A 1)

where the gravitational acceleration is assumed in the negative x3-direction
(gi = −gδiz), and C(x3, t) represents the instantaneous ensemble-average of C in
the horizontal (x, y)-plane at distance x3 from the wall. The sum of the pressure
gradient and gravity terms in the fluid momentum equation in the x3-direction, using
(A 1), thus becomes

−(1 − C)∂x3
P − (1 − C)g = − (1 − C)∂x3

p + (1 − C)∂x3

[
g

∫ x3

0

(1 − C) dx3

]
− (1 − C)g

= −(1 − C)∂x3
p − C(1 − C)g. (A 2)

Substituting (A 2) in (2.2), the fluid momentum equations can be written as

∂t [(1 − C)Ui] + ∂j [(1 − C)UiUj ] = −∂i[(1 − C)p] + ν ∂j [(1 − C)(∂jUi + ∂iUj )]

− fi + p∂i(1 − C) + C(1 − C)gi. (A 3)

The bubble–fluid coupling force fi in (A 3) is computed as the net force per unit mass
of fluid imparted on the fluid by Nb(x, t) bubbles within the computational control
volume Vc(x) as

−fi = C

(
DUs,i

Dt
− gi

)
=

Nb(x,t)∑
b=1

[
[πd3

b /6]

Vc(x)

(
DUs,i(xb(t))

Dt
−gi

)]
, (A 4)

where db is the bubble diameter. Furthermore, because the bubble location xb(t)
does not coincide in general with the position x of any grid nodes, the term under
summation in (A 4) was linearly projected to the eight grid nodes surrounding the
bubble b prior to the summation.

The solution algorithm starts by defining RUi as

RUi ≡ −∂j [(1 − C)UiUj ] + ν ∂j [(1 − C)(∂jUi + ∂iUj )]

− fi + p ∂i(1 − C) + C(1 − C)gi (A 5)

and Ŭi and p̆ as

Ŭi ≡ (1 − C)Ui and p̆ ≡ (1 − C)p. (A 6)

Thus, (A 3) can be rewritten as,

∂t Ŭi = −∂ip̆ + RUi. (A 7)

The RUi terms were discretized in space in an Eulerian framework on a staggered
mesh using a second-order central-difference scheme, except for the mean advection
terms, which were evaluated via a fifth-order upwind differencing scheme. Time
integration of (A 7), without the pressure gradient term, was performed using the
Adams–Bashforth scheme,

Ŭ ∗
i − Ŭ n

i

�t
=

3

2
RUn

i − 1

2
RUn−1

i , (A 8)

where Ŭ ∗
i is an approximate value of Ŭ n+1

i before applying the pressure correction

(A 17) below, and the superscipts indicate the time level, i.e. Ŭ n
i = Ŭi(x, tn). The time
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step used was �t+ = 0.075 in cases A and B, and �t+ =0.15 in cases C and D. The
following Poisson equation for pressure:

∂2
ii p̆

n+1 =
1

�t

[
∂iŬ

∗
i − ∂iŬ

n+1
i

]
, (A 9)

written in finite-difference form (Gerz, Schumann & Elghobashi 1989) was solved
using a cosine transform in the streamwise direction (Wilhelmson & Ericksen 1977),
a fast Fourier transform (FFT) in the spanwise direction, and Gauss elimination in
the wall-normal direction (Schmidt, Schumann & Volkert 1984). The discrete cosine
and Fourier transforms were computed using the FFTW library by Frigo & Johnson
(2005).

In order to compute the right-hand side of (A 9), ∂iŬ
n+1
i was evaluated using the

fluid continuity equation (2.1), as

∂iŬ
n+1
i = ∂tC

n+1, (A 10)

where ∂tC
n+1 was evaluated as

∂tC
n+1 =

Cn+1 − Cn

�t
. (A 11)

In (A 11), the local concentration Cn was computed from the instantaneous local
number of bubbles Nb(x, tn) in a given computational cell as

C(x, tn) = Nb(x, tn)
[πd3

b /6]

Vc(x)
, (A 12)

whereas Cn+1 was obtained by solving the bubble-phase continuity equation (Drew
1983; Zhang & Prosperetti 1997),

∂tC + ∂jCV j = 0, (A 13)

using the Adams–Bashforth scheme:

Cn+1 − Cn

�t
=

3

2
RCn − 1

2
RCn−1 , (A 14)

where RC is defined as,

RC ≡ −∂jCV j . (A 15)

The bubble-phase instantaneous local velocity V i in (A 13) was evaluated by ensemble
averaging the bubbles velocities within the local computational cell:

V i(x, t) =
1

Nb(x, t)

Nb(x,t)∑
b=1

Vi(xb(t)). (A 16)

Finally, Un+1
i was updated by accounting for the pressure correction as

Un+1
i = [Ŭ ∗

i − �t ∂i p̆
n+1] / [(1 − C)n+1]. (A 17)

At each grid point of the computational mesh and at each time step we checked that
the continuity equation of the fluid (2.1), is satisfied. The maximum and minimum
values of the left-hand side of (2.1) computed instantaneously at each grid point of
the computational mesh are of the order of 10−13.

The bubble equation of motion (2.3) was solved in time for each computational
bubble using the Adams–Bashforth scheme to compute the bubble velocity. The fluid
velocity, Us , fluid vorticity, Ωs , and fluid Lagrangian derivative, DUs/Dt , at the bubble
location, needed to solve (2.3), were computed via a fourth-order-accurate fully three-
dimensional Hermite cubic interpolation polynomial adapted to a non-uniform mesh
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(see Ferrante 2004, Appendix D). The fluid Lagrangian derivatives, DUi/Dt , at the
staggered grid points, needed for the interpolation of DUs/Dt , were computed using
(A 3) and (2.1) as

DUi

Dt
=

1

1 − C
{−∂i[(1 − C)p] + ν ∂j [(1 − C)(∂jUi + ∂iUj )] − fi + p ∂i(1 − C)

+ C(1 − C)gi}. (A 18)

The bubbles positions were then updated from the time integration of the bubble
velocity (dxb/dt = V ) as

xn+1
b = xn

b +
�t

2
[V n+1 + V n]. (A 19)
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